

UNIVERSITY OF NORTH BENGAL B.Sc. Honours 2nd Semester Examination, 2021

GE2-STATISTICS

Full Marks: 40

ASSIGNMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

1.	Answer	any fou	r questions	from the	e following:
		, j j e i	- 4		- 10 mo // m.B.

- (a) State two properties of Normal distribution.
- (b) Define Probability density function of a random variable *X*.
- (c) The mean and variance of X are 10 and 4 respectively. Find the variance of 3-4X.
- (d) A die is thrown 108 times in succession. Find the expectation and variance of the number of "six" appeared.
- (e) The probability that a patient will die due to heart attack is 0.2. Prove that the probability that out of 20 patients at least one will die is $\{1 (0.8)^{20}\}$.
- (f) A coin is tossed 4 times in succession. Find the probability of obtaining one tail.

GROUP-B

Answer any four questions from the following $8 \times 4 = 32$

- 2. (a) From a pack of 52 cards, an even number cards is drawn. Find the probability that these consist of half of red and half of black.
 - (b) A point *P* is taken at random in a line *AB* of length 2*a*. Find the mathematical 4 expectation of $AP \cdot PB$ and that of the difference of |AP PB|.
- 3. (a) Determine the value of k such that f(x) defined by

$$f(x) = \begin{cases} kx(1-x) &, & 0 < x < 1 \\ 0 &, & \text{otherwise} \end{cases}$$

Is a probability density function.

 $2 \times 4 = 8$

3

(b) For the Binomial (n, p) distribution prove that $\mu_{r+1} = p(1-p) \left[nr\mu_{r-1} + \frac{d\mu_r}{dp} \right]$, 5 where μ_r is the *r*th central moment.

4.		State and prove Bayes' theorem.	2+6=8
5.	(a)	Write down the probability mass function of Normal distribution.	1
	(b)	Explain continuous probability distribution.	2
	(c)	Find the mean and variance for a normal distribution.	5
6.	(a)	If <i>A</i> and <i>B</i> are two events such that $P(A) = P(B) = 1$, show that $P(A+B) = 1$.	1
	(b)	Find the probability that there may be 53 Sundays in a Leap year.	3
	(c)	A box contains ' a ' white and ' b ' black balls, ' c ' balls are drawn. Find the expected value of the number of white balls drawn.	4
7.	(a)	Define: (i) Axiomatic definition of probability. (ii) Mutually exhaustive events.	1+1
	(b)	If $f(x, y) = 3x^2 - 8xy + 6y^2$ (0 < x < 1, 0 < y < 1), find $f_x(x \mid y)$ and $f_y(y \mid x)$ and show that X and Y are independent.	6

-x-