

UNIVERSITY OF NORTH BENGAL
 B.Sc. Honours 2nd Semester Examination, 2021

GE2-Statistics

Full Marks: 40

ASSIGNMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

1. Answer any four questions from the following:
(a) State two properties of Normal distribution.
(b) Define Probability density function of a random variable X.
(c) The mean and variance of X are 10 and 4 respectively. Find the variance of $3-4 X$.
(d) A die is thrown 108 times in succession. Find the expectation and variance of the number of "six" appeared.
(e) The probability that a patient will die due to heart attack is 0.2 . Prove that the probability that out of 20 patients at least one will die is $\left\{1-(0.8)^{20}\right\}$.
(f) A coin is tossed 4 times in succession. Find the probability of obtaining one tail.

GROUP-B

Answer any four questions from the following

2. (a) From a pack of 52 cards, an even number cards is drawn. Find the probability that these consist of half of red and half of black.
(b) A point P is taken at random in a line $A B$ of length $2 a$. Find the mathematical expectation of $A P \cdot P B$ and that of the difference of $|A P-P B|$.
3. (a) Determine the value of k such that $f(x)$ defined by

$$
f(x)=\left\{\begin{array}{cll}
k x(1-x) & , & 0<x<1 \\
0 & , & \text { otherwise }
\end{array}\right.
$$

Is a probability density function.
(b) For the Binomial (n, p) distribution prove that $\mu_{r+1}=p(1-p)\left[n r \mu_{r-1}+\frac{d \mu_{r}}{d p}\right]$, where μ_{r} is the r th central moment.
4. State and prove Bayes' theorem.
5. (a) Write down the probability mass function of Normal distribution.
(b) Explain continuous probability distribution. 2
(c) Find the mean and variance for a normal distribution. 5
6. (a) If A and B are two events such that $P(A)=P(B)=1$, show that $P(A+B)=1$.
(b) Find the probability that there may be 53 Sundays in a Leap year.
(c) A box contains ' a ' white and ' b ' black balls, ' c ' balls are drawn. Find the 4 expected value of the number of white balls drawn.
7. (a) Define:
(i) Axiomatic definition of probability.
(ii) Mutually exhaustive events.
(b) If $f(x, y)=3 x^{2}-8 x y+6 y^{2}(0<x<1,0<y<1)$, find $f_{x}(x \mid y)$ and $f_{y}(y \mid x)$ and show that X and Y are independent.

